【Linux要笑着学】进程创建 | 进程终止 | slab分派器

奋斗吧
奋斗吧
擅长邻域:未填写

标签: 【Linux要笑着学】进程创建 | 进程终止 | slab分派器 MySQL博客 51CTO博客

2023-07-13 18:24:39 117浏览

【Linux要笑着学】进程创建 | 进程终止 | slab分派器,本章我们主要讲解进程的创建与终止。首先讲解进程创建,fork函数是我们早在讲解"进程的概念"章节就提到过的一个函数,在上个


  

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_02

? 写在前面:本章我们主要讲解进程的创建与终止。首先讲解进程创建,fork 函数是我们早在讲解 "进程的概念" 章节就提到过的一个函数,在上个章节我们讲解了 "进程地址空间" 后,我们解释了 fork 函数有两个返回值的问题,本章我们要学习进程的创建,所以我们要正式介绍一下 fork 函数。随后讲解进程终止,我们需要对终止有一个正确的认识,在本章我们会详细探讨 主函数 return 0 到底是个什么情况,从而引发进程退出码和错误码的概念。再探讨一下进程退出的常见方法,最后引出内存数据结构缓冲池,简单介绍一下 slab 分派器。


Ⅰ. 进程创建(Process creation)

0x00 分叉函数 fork

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_03

 在 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_04

中, fork

#include <unistd.h>
pid_t fork(void);

新进程为子进程 (child process) ,而原进程为父进程 (father process) 

返回值:子进程中返回 0,父进程返回子进程 id,出错返回 -1

❓ 进程调用 fork,当控制转移到内核中的 fork 代码后,操作系统会做什么? 

①  将给子进程分配新的内存块和内核数据结构

  • 创建 task_struct 和进程地址空间 mm_struct 

②  将父进程部分数据结构内容拷贝至子进程

  • 以父进程为模板,设置子进程的相关数据结构和父进程相关字段保持一致。
  • task_struct、地址空间、区域划分很多东西都是一样的。
  • 但不是无脑拷贝!比如累计调度的时间片是不一样的。

③  添加子进程到系统进程列表当中

  • 取决于你进程是要做什么,创建后如果状态没问题就会直接链入运行队列中。

④  fork 返回,开始调度器调度

  • 当准备返回时,上面三个工作都有了,父进程继续执行开始 return,子进程也可能执行 fork 的返回值,然后就会得到两次返回。

第一次返回的本质:通过寄存器向接收变量进行写入,写入的本质就是进行修改,所以就会发生写时拷贝,进而让同一个变量出现不同的值。至此就解释了 fork 的返回值为什么会有两个的问题。

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_运维_05

当一个进程调用 fork 之后,就有两个二进制代码相同的进程,并且它们都运行到相同的地方。

但每个进程都可以开始它们自己的旅程,我们来看下面的代码:

? 代码演示:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
    printf("Before -> pid: %d\n", getpid());
    fork();
    printf("After -> pid: %d\n", getpid());

    sleep(1);

    return 0;
}

? 运行结果如下:

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_linux_06

我们看到有三行输出,一行 Before,两行 After,进程 27303 先打印 Before 信息,然后它又打印了 Afrer。另一个 After 是 27304 打印的。进程 27304

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_07

  • fork
  • fork 之后:父子分道扬镳,父子两个执行流分别执行(因为 fork

? 注意:fork 之后,谁先执行谁后执行完全由调度器决定!

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_08

 那么 fork 之后,是否只有 fork 之后的代码是被父子进程共享的?

实际上,fork 之后代码共享这样的说法并不准确。一般情况 fork 之后,父子共享所有的代码

子进程执行的后续代码 !=共享的所有代码,只不过子进程只能从这里开始执行!

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_linux_09

它是怎么知道的呢?没关系,eip 程序计数器会出手!

eip 叫做 程序计数器,用来保存当前正在执行的指令的下一条指令。

eip 程序计数器会拷贝给子进程,子进程便从该 eip 所指向的代码处开始执行。

我们再来重新思考一下 fork

" 进程 = 进程的数据结构 + 进程的代码和数据 "

创建子进程的内核数据结构:

(struct task_struct + struct mm_struct + 页表)代码继承父进程,数据以写时拷贝的方式来进行共享或者独立。

? 结论:fork

0x01 写时拷贝(copy-on-write) 

我们知道,进程具有独立性,代码和数据必须是独立的,代码只能读取 → 写时拷贝

写时拷贝技术,我们在上一章把这个名词提了出来,但是没有深入讲解,今天我们就要探究为什么要写时拷贝。通常,父子代码共享,父子在不让写入时数据也是共享的。当任意一方试图写入,就会按照写时拷贝的方式各自拷贝一份副本出来。写时拷贝本身由操作系统的内存管理模块完成的。

操作系统为什么要写时拷贝?创建子进程的时候就把数据分开不行吗?

  • 有浪费空间之嫌:父进程的数据,子进程不一定全用;即便使用,也不一定全部写入。
  • 最理想的情况,只有会被父子修改的数据,进行分离拷贝。不需要修改的数据,共享即可。但是从技术角度实现复杂。
  • 如果 fork 的时候,就无脑拷贝数据给子进程,会增加 fork 的成本(内存和时间)

最终采用写时拷贝:只会拷贝父子修改的、变相的,就是拷贝数据的最小成本。拷贝的成本依旧存在。

写时拷贝实际上以一种 延迟拷贝策略,延迟拷贝最大的价值:只有真正使用的时候才给你拷。

其最大的意义在于,你想要,但是不立马使用的空间,先不给你,那么也就意味着可以先给别人。

反正拷贝的成本总是要有,早给你晚给你都是一样。万一我现在给你你又不用,那其实不很浪费?所以我选择暂时先不给你,等你什么时候要用什么时候再给。这就变相的提高了内存的使用情况。

0x03 fork 常规用法

我们一般不会 fork

我们 fork 之后只为了让父子执行不同的代码,所以当你希望创建一个子进程,和父亲做类似的事情时(注意是类似,不是相同),fork

最简单的方式就是 fork 之后利用 if-else 进行分流, 让父子执行不同的代码块。刚才通过实验我们也知道了,实际上 if-else 代码也是父进程,只不过子进程执行了父进程的代码罢了。所以,我们在 fork 之后让父子执行不同的代码段,这就是典型地 fork

一个父进程希望复制自己,使父子进程同时执行不同的代码段。我们做网络写服务器的时候会经常采用这样的编码方式,例如父进程等待客户端请求,生成子进程来处理请求。

还有一种用法就是 fork 之后创建子进程想做和父亲完全不一样的事情,比如子进程从 fork 返回后,调用 exec

0x04 fork 调用失败的情况

fork 肯定不是永远都成功的,fork

系统中有太多进程,导致内存资源不足,fork

一般 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_04

系统中规定每一个用户能起的进程数是有限制的,所以也能够导致失败。

? 代码演示:我们可以手动演示一下 fork

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
    for (;;) {
        pid_t id = fork();
        if (id < 0) {
            printf("子进程创建失败!\n");
            break;
        }
        if (id == 0) {
            printf("I am a child... %d\n", getpid());
            sleep(2); // 给它活2秒后 exit
            exit(0);  // 成功就退出
        }
    }

    return 0;
}

? 运行结果如下:

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_11

Ⅱ. 进程终止(Process Termination)

0x00 终止的正确认识

我们一开始是如何学习 C++ 的呢?C/C++ 的时侯,main 函数就是所谓的 入口函数

#include <stdio.h>

int main()
{
    printf("Hello,World!\n");
    
    return 0;
}

大家对 Hello,World! 想必是再熟悉不过了,但是不知道大家是否关注过这个 return

下面我们思考两个问题:

这个 return 0 究竟给谁 return

 为何是 0

常见的进程退出:

① 代码跑完,结果正确。
② 代码跑完,结果不正确。
③ 代码没跑完,程序异常了。

返回值为 0,表示进程代码跑完,结果是否正确,我们用 0 表示成功,非 0

所以,写代码无脑写 0

0x01 进程退出码

最想知道的是 失败的原因!所以用非零表示不用的原因。

我们把 main 函数的 return

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_12

  返回值称之为 进程退出码

进程退出码是非常重要的,进程退出码表征了进程推出的信息,它是要给父进程读取的。

我们通过内置命令 echo,我们让 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_13

自己执行内部的函数来打印:

$ echo $?

我们先运行一下刚才的 mytest (刚才演示 fork

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_14

这里之所以会第一次执行 echo $? 得到 130,第二次得到 0,原因如下:

$? 表示在 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_13

中,最近一次执行完毕时,对应进程的退出码。

所以我们来试试 ls 指令后输入 echo $?

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_16

此时如果我们让 ls 显示一个完全不存在的文件,ls 会报错,再  echo $? 退出码就不再是 0

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_17

再反观我们之前学 C 时,代码都是无脑 return 0

而这些指令代码的 return

实际上,即使不会也没有关系,你无脑 return 0return 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_18

  都没有问题。

但是我们继续往下看!

0x02 错误码

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_运维_19

 好,现在我们想变成懂哥,不再是随便无脑  return

一般而言,失败的非零值我该如何设置呢?非零值默认表达的含义又是什么呢?

首先,失败的非零值是可以自定义的,我们可以看看系统对于不同数字默认的 错误码 是什么含义。C 语言当中有个的 string.h中有一个 strerror 接口,是最经典的、将错误码表述打印出来的接口,这在我们的 《维生素C语言》 专栏中的字符串章节也对它有做过说明和讲解。我们现在对它再进行一次介绍!

? 头文件: string.h
? 链接: strerror - C++ Reference 
? 说明:返回错误码,返回错误码所对应的错误信息

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_20

如果感兴趣可以看看 2.6.32 的内核代码中的  /usr/include/asm-generic/errno.h  及 errno-base.h,输出错误原因定义归纳整理如下:

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */
#define ENXIO 6 /* No such device or address */
#define E2BIG 7 /* Argument list too long */
#define ENOEXEC 8 /* Exec format error */
#define EBADF 9 /* Bad file number */
#define ECHILD 10 /* No child processes */
#define EAGAIN 11 /* Try again */
#define ENOMEM 12 /* Out of memory */
#define EACCES 13 /* Permission denied */
#define EFAULT 14 /* Bad address */
#define ENOTBLK 15 /* Block device required */
#define EBUSY 16 /* Device or resource busy */
#define EEXIST 17 /* File exists */
#define EXDEV 18 /* Cross-device link */
#define ENODEV 19 /* No such device */
#define ENOTDIR 20 /* Not a directory */
#define EISDIR 21 /* Is a directory */
#define EINVAL 22 /* Invalid argument */
#define ENFILE 23 /* File table overflow */
#define EMFILE 24 /* Too many open files */
#define ENOTTY 25 /* Not a typewriter */
#define ETXTBSY 26 /* Text file busy */
#define EFBIG 27 /* File too large */
#define ENOSPC 28 /* No space left on device */
#define ESPIPE 29 /* Illegal seek */
#define EROFS 30 /* Read-only file system */
#define EMLINK 31 /* Too many links */
#define EPIPE 32 /* Broken pipe */
#define EDOM 33 /* Math argument out of domain of func */
#define ERANGE 34 /* Math result not representable */
#define EDEADLK 35 /* Resource deadlock would occur */
#define ENAMETOOLONG 36 /* File name too long */
#define ENOLCK 37 /* No record locks available */
#define ENOSYS 38 /* Function not implemented */
#define ENOTEMPTY 39 /* Directory not empty */
#define ELOOP 40 /* Too many symbolic links encountered */
#define EWOULDBLOCK EAGAIN /* Operation would block */
#define ENOMSG 42 /* No message of desired type */
#define EIDRM 43 /* Identifier removed */
#define ECHRNG 44 /* Channel number out of range */
#define EL2NSYNC 45 /* Level 2 not synchronized */
#define EL3HLT 46 /* Level 3 halted */
#define EL3RST 47 /* Level 3 reset */
#define ELNRNG 48 /* Link number out of range */
#define EUNATCH 49 /* Protocol driver not attached */
#define ENOCSI 50 /* No CSI structure available */
#define EL2HLT 51 /* Level 2 halted */
#define EBADE 52 /* Invalid exchange */
#define EBADR 53 /* Invalid request descriptor */
#define EXFULL 54 /* Exchange full */
#define ENOANO 55 /* No anode */
#define EBADRQC 56 /* Invalid request code */
#define EBADSLT 57 /* Invalid slot */
#define EDEADLOCK EDEADLK
#define EBFONT 59 /* Bad font file format */
#define ENOSTR 60 /* Device not a stream */
#define ENODATA 61 /* No data available */
#define ETIME 62 /* Timer expired */
#define ENOSR 63 /* Out of streams resources */
#define ENONET 64 /* Machine is not on the network */
#define ENOPKG 65 /* Package not installed */
#define EREMOTE 66 /* Object is remote */
#define ENOLINK 67 /* Link has been severed */
#define EADV 68 /* Advertise error */
#define ESRMNT 69 /* Srmount error */
#define ECOMM 70 /* Communication error on send */
#define EPROTO 71 /* Protocol error */
#define EMULTIHOP 72 /* Multihop attempted */
#define EDOTDOT 73 /* RFS specific error */
#define EBADMSG 74 /* Not a data message */
#define EOVERFLOW 75 /* Value too large for defined data type */
#define ENOTUNIQ 76 /* Name not unique on network */
#define EBADFD 77 /* File descriptor in bad state */
#define EREMCHG 78 /* Remote address changed */
#define ELIBACC 79 /* Can not access a needed shared library */
#define ELIBBAD 80 /* Accessing a corrupted shared library */
#define ELIBSCN 81 /* .lib section in a.out corrupted */
#define ELIBMAX 82 /* Attempting to link in too many shared libraries */
#define ELIBEXEC 83 /* Cannot exec a shared library directly */
#define EILSEQ 84 /* Illegal byte sequence */
#define ERESTART 85 /* Interrupted system call should be restarted */
#define ESTRPIPE 86 /* Streams pipe error */
#define EUSERS 87 /* Too many users */
#define ENOTSOCK 88 /* Socket operation on non-socket */
#define EDESTADDRREQ 89 /* Destination address required */
#define EMSGSIZE 90 /* Message too long */
#define EPROTOTYPE 91 /* Protocol wrong type for socket */
#define ENOPROTOOPT 92 /* Protocol not available */
#define EPROTONOSUPPORT 93 /* Protocol not supported */
#define ESOCKTNOSUPPORT 94 /* Socket type not supported */
#define EOPNOTSUPP 95 /* Operation not supported on transport endpoint */
#define EPFNOSUPPORT 96 /* Protocol family not supported */
#define EAFNOSUPPORT 97 /* Address family not supported by protocol */
#define EADDRINUSE 98 /* Address already in use */
#define EADDRNOTAVAIL 99 /* Cannot assign requested address */
#define ENETDOWN 100 /* Network is down */
#define ENETUNREACH 101 /* Network is unreachable */
#define ENETRESET 102 /* Network dropped connection because of reset */
#define ECONNABORTED 103 /* Software caused connection abort */
#define ECONNRESET 104 /* Connection reset by peer */
#define ENOBUFS 105 /* No buffer space available */
#define EISCONN 106 /* Transport endpoint is already connected */
#define ENOTCONN 107 /* Transport endpoint is not connected */
#define ESHUTDOWN 108 /* Cannot send after transport endpoint shutdown */
#define ETOOMANYREFS 109 /* Too many references: cannot splice */
#define ETIMEDOUT 110 /* Connection timed out */
#define ECONNREFUSED 111 /* Connection refused */
#define EHOSTDOWN 112 /* Host is down */
#define EHOSTUNREACH 113 /* No route to host */
#define EALREADY 114 /* Operation already in progress */
#define EINPROGRESS 115 /* Operation now in progress */
#define ESTALE 116 /* Stale NFS file handle */
#define EUCLEAN 117 /* Structure needs cleaning */
#define ENOTNAM 118 /* Not a XENIX named type file */
#define ENAVAIL 119 /* No XENIX semaphores available */
#define EISNAM 120 /* Is a named type file */
#define EREMOTEIO 121 /* Remote I/O error */
#define EDQUOT 122 /* Quota exceeded */
#define ENOMEDIUM 123 /* Nomedium found */
#define EMEDIUMTYEP 124 /*Wrongmedium found */
#define ECANCELED 125 /* Operation Canceled */
#define ENOKEY 126 /* Required key not available */
#define EKEYEXPIRED 127 /* Key has expired */
#define EKEYREVOKED 128 /* Key has been revoked */
#define EKEYREJECTED 129 /* Key was rejected by service */
#define EOWNERDEAD 130 /* Owner died */
#define ENOTRECOVERABLE 131 /* State not recoverable */
#define ERFKILL 132 /* Operation not possible due to RF-kill */
#define EHWPOISON 133 /* Memory page has hardware error */

我们可以在 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_04

下写个程式去把这些错误码给打印出来:

#include <stdio.h>
#include <string.h>

int main(void) 
{
  int i = 0;
  for (i = 0; i < 100; i++) {
    printf("%d: %s\n", i, strerror(i));
  }
}

? 运行结果如下:

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_22

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_23

其中,0 表示 success,1 表示权限不允许,2

我们刚才 ls 一个不存在的,再 echo $?  显示对应的错误码就是 2:

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_linux_24

? 总结:错误码退出码可以对应不同的错误原因,方便我们定位问题出在哪里。

0x03 进程终止的常见方法

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_25

 正常终止(可以通过 echo $?

main 函数返回    调用 exit     ③ _exit

我们先思考两个问题:

1. 在 main 函数中的 return(为什么其他函数不行)?
2. 在自己的代码任意地点中,调用 exit() 都可以做到进程退出。

该函数想必大家并不陌生,exit 并不是一个系统调用,而是用 C 写的。

? 代码演示:我们来用一下这个 exit 函数:

#include <stdio.h>
#include <stdlib.h>

void func() {
    printf("hello func\n");
    exit(111);
}

int main(void)
{
    func();    

    return 10;
}

? 运行结果如下:

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_26

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_27

 从 main 函数调了 func 函数,进去打印后执行了 exit,最后进程没有返回直接在函数内部直接终止进程,这就叫调 exit 直接终止进程。此时我们 echo $? 得到的结果是 111

exit 当然也是可以在 main

如果你以后想终止一个进程,只需要在任意地点调用 exit 去 "代表" 进程退出

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_28

注意,只有在 main 函数调 return 才叫做 进程退出,其他函数调 return 叫做 函数返回

 

下面我们再来讲解一下 _exit 函数,_exit

exit 和 _exit 是调用和被调用的关系,exit 是调用了 _exit

? 代码演示:_exit

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
    _exit(222);

    return 10;
}

? 运行结果如下:

? 区别:exit 会清理缓冲区,关闭流等操作,而 _exit

0x04 内核数据结构缓冲池

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_29

我们知道: 进程 = 内核结构 + 进程代码和数据 。

内核结构最典型的就是 task_struct 和 mm_struct,定义对象后以此充当进程的内核结构。

对于操作系统,可能并不会释放该进程的内核数据结构!

注意,这里说的是 "可能",释不释放取决于内存里的空间是否充盈。

我们来谈论一下不会释放的情况会发生什么,既然不会释放,那岂不是会一直占用?

实际上,创建进程我们从零开始构建对象,创建对象分为两个步骤,即开辟空间与初始化。

无论是开辟空间还是初始化都是要花费时间的,存在 cost 的……那该怎么办?

"没关系,Linux 会出手"

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_服务器_04

 会维护一张废弃的数据结构链表,我们称之为

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_31

,它是我们链表的数据结构结点。

当进程1释放后,进程的相关数据结构会维护进链表中,该数据结构是已经被操作系统释放掉了,但是并没有把它把它空间释放掉,而是设置其为 "无效"。当你再次创建进程时,它会从该队列中把相应的 task_struct 和 mm_struct 取出来,这就节省了开辟空间所花费的时间,要做的也只是把新进程的代码和空间进行初始化,可谓非常的轻松。

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_linux_32

 这种做法我们称之为 内核的数据结构缓冲池,该策略在操作系统中称为 slab 分派器 

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_#define_33

由于内核数据结构高频地使用,创建一个进程释放一个进程是特别高频率的事情。

每次开辟空间再初始化难免有些累,既然频率高,那么索性不再对结构进行重新申请。

直接把数据结构缓存起来,要就拿,不要就再放回去(便利店借雨伞),这就是 slab

slab 是 Linux 操作系统的一种内存分配机制,slab 分配算法采用 cache 存储内核对象。slab 缓存、从缓存中分配和释放对象然后销毁缓存的过程必须要定义一个 kmem_cache 对象,然后对其进行初始化,这个特定的缓存包含 32 字节的对象。

? 链接:百度百科

(该分配器在内核中是一个非常名正言顺并且非常非常大一坨,这里我们就不看源码了,就现阶段而言其逻辑也非常复杂,这里只需要知道它的原理即可)

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_34

【Linux要笑着学】进程创建 | 进程终止 | slab分派器_进程_35

? [ 笔者 ]   王亦优
? [ 更新 ]   2023.3.1
❌ [ 勘误 ]   /* 暂无 */
? [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

? 参考资料 

C++reference[EB/OL]. []. http://www.cplusplus.com/reference/.

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

比特科技. Linux[EB/OL]. 2021[2021.8.31 x

好博客就要一起分享哦!分享海报

此处可发布评论

评论(0展开评论

暂无评论,快来写一下吧

展开评论

您可能感兴趣的博客

客服QQ 1913284695