Yolov8详解与实战

奋斗吧
奋斗吧
擅长邻域:未填写

标签: Yolov8详解与实战

2023-03-18 03:00:12 1348浏览

YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,鉴于Yolov5的良好表现,Yolov8在还没有开源时就收到了用户的广泛关注。yolov8的整体架构如下:Yolov8的改进之处有以下几个地方:yolov8是个模型簇,从小到大包括:yolov8n、yolov8s、yolov8m、yolov8l、yolov8x等。模型参数、运行速度、参数量等详见下表:对比yolov5,如下表:mAP和参

摘要

YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,鉴于Yolov5的良好表现,Yolov8在还没有开源时就收到了用户的广泛关注。yolov8的整体架构如下:
在这里插入图片描述

Yolov8的改进之处有以下几个地方:

  • Backbone:使用的依旧是CSP的思想,将YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  • PAN-FPN:YOLOv8依旧使用了PAN的思想,不同的是YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
  • Decoupled-Head:这一点源自YOLOX;分类和回归两个任务的head不再共享参数,YoloV8也借鉴了这样的head设计。
  • Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  • 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  • 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

yolov8是个模型簇,从小到大包括:yolov8n、yolov8s、yolov8m、yolov8l、yolov8x等。模型参数、运行速度、参数量等详见下表:
在这里插入图片描述
对比yolov5,如下表:
在这里插入图片描述
mAP和参数量都上升了不少,具体的感受还是要亲自实践一番。

这篇文章首先对YoloV8做详细的讲解,然后实现对COCO数据集的训练和测试,最后,实现自定义数据集的训练和测试。
希望能帮助到朋友们!

分割的结果
在这里插入图片描述
分类的结果

在这里插入图片描述

模型详解

C2F模块

yolov8将yolov5中的C3模块换成了C2F模型,我们先了解一下C3模块,如图:
在这里插入图片描述
C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,堆叠的个数由参数n来进行控制,不同的模型,n的个数也不相同。C3的pytorch代码如下:

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

接下来,我们一起学习C2F模块,先经过一个Conv,然后使用chunk函数将out平均拆分成两个向量,然后保存到list中,将后半部分输入到Bottleneck Block里面,Bottleneck Block里面有n个Bottleneck,将每个Bottleneck的输出都追加list中,有n个,所以拼接之后的out等于0.5✖(n+2)。然后经过一个Conv输出,所以输出为h×w×c_out。如下图:

在这里插入图片描述

如果还是比较难懂,我将具体的数据代入图中,得出下图:
在这里插入图片描述

Loss

对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。

VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。

在这里插入图片描述

q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。

针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。
在这里插入图片描述

DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;

DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。

head部分

相对于YOLOv5,YOLOv8将Head里面C3模块替换为了C2f,将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。通过下图对比可以看出差别:
在这里插入图片描述

在这里插入图片描述

YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:
在这里插入图片描述

模型实战

训练COCO数据集

本次使用2017版本的COCO数据集作为例子,演示如何使用YoloV8训练和预测。

下载数据集

Images:

  • 2017 Train images [118K/18GB] :http://images.cocodataset.org/zips/train2017.zip
  • 2017 Val images [5K/1GB]:http://images.cocodataset.org/zips/val2017.zip
  • 2017 Test images [41K/6GB]:http://images.cocodataset.org/zips/unlabeled2017.zip

Annotations:

  • 2017 annotations_trainval2017 [241MB]:http://images.cocodataset.org/annotations/annotations_trainval2017.zip

COCO转yolo格式数据集(适用V4,V5,V6,V7,V8)

最初的研究论文中,COCO中有91个对象类别。然而,在2014年的第一次发布中,仅发布了80个标记和分割图像的对象类别。2014年发布之后,2017年发布了后续版本。详细的类别如下:

ID OBJECT (PAPER) OBJECT (2014 REL.) OBJECT (2017 REL.) SUPER CATEGORY
1 person person person person
2 bicycle bicycle bicycle vehicle
3 car car car vehicle
4 motorcycle motorcycle motorcycle vehicle
5 airplane airplane airplane vehicle
6 bus bus bus vehicle
7 train train train vehicle
8 truck truck truck vehicle
9 boat boat boat vehicle
10 trafficlight traffic light traffic light outdoor
11 fire hydrant fire hydrant fire hydrant outdoor
12 street sign - -
13 stop sign stop sign stop sign outdoor
14 parking meter parking meter parking meter outdoor
15 bench bench bench outdoor
16 bird bird bird animal
17 cat cat cat animal
18 dog dog dog animal
19 horse horse horse animal
20 sheep sheep sheep animal
21 cow cow cow animal
22 elephant elephant elephant animal
23 bear bear bear animal
24 zebra zebra zebra animal
25 giraffe giraffe giraffe animal
26 hat - - accessory
27 backpack backpack backpack accessory
28 umbrella umbrella umbrella accessory
29 shoe - - accessory
30 eye glasses - - accessory
31 handbag handbag handbag accessory
32 tie tie tie accessory
33 suitcase suitcase suitcase accessory
34 frisbee frisbee frisbee sports
35 skis skis skis sports
36 snowboard snowboard snowboard sports
37 sports ball sports ball sports ball sports
38 kite kite kite sports
39 baseball bat baseball bat baseball bat sports
40 baseball glove baseball glove baseball glove sports
41 skateboard skateboard skateboard sports
42 surfboard surfboard surfboard sports
43 tennis racket tennis racket tennis racket sports
44 bottle bottle bottle kitchen
45 plate - - kitchen
46 wine glass wine glass wine glass kitchen
47 cup cup cup kitchen
48 fork fork fork kitchen
49 knife knife knife kitchen
50 spoon spoon spoon kitchen
51 bowl bowl bowl kitchen
52 banana banana banana food
53 apple apple apple food
54 sandwich sandwich sandwich food
55 orange orange orange food
56 broccoli broccoli broccoli food
57 carrot carrot carrot food
58 hot dog hot dog hot dog food
59 pizza pizza pizza food
60 donut donut donut food
61 cake cake cake food
62 chair chair chair furniture
63 couch couch couch furniture
64 potted plant potted plant potted plant furniture
65 bed bed bed furniture
66 mirror - - furniture
67 dining table dining table dining table furniture
68 window - - furniture
69 desk - - furniture
70 toilet toilet toilet furniture
71 door - - furniture
72 tv tv tv electronic
73 laptop laptop laptop electronic
74 mouse mouse mouse electronic
75 remote remote remote electronic
76 keyboard keyboard keyboard electronic
77 cell phone cell phone cell phone electronic
78 microwave microwave microwave appliance
79 oven oven oven appliance
80 toaster toaster toaster appliance
81 sink sink sink appliance
82 refrigerator refrigerator refrigerator appliance
83 blender - - appliance
84 book book book indoor
85 clock clock clock indoor
86 vase vase vase indoor
87 scissors scissors scissors indoor
88 teddy bear teddy bear teddy bear indoor
89 hair drier hair drier hair drier indoor
90 toothbrush toothbrush toothbrush indoor
91 hair brush - - indoor

可以看到,2014年和2017年发布的对象列表是相同的,它们是论文中最初91个对象类别中的80个对象。所以在转换的时候,要重新对类别做映射,映射函数如下:

def coco91_to_coco80_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
    x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
         None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
         51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
         None, 73, 74, 75, 76, 77, 78, 79, None]
    return x

接下来,开始格式转换,工程的目录如下:
在这里插入图片描述

  • coco:存放解压后的数据集。
    -out:保存输出结果。
    -coco2yolo.py:转换脚本。

转换代码如下:

import json
import glob
import os
import shutil
from pathlib import Path
import numpy as np
from tqdm import tqdm


def make_folders(path='../out/'):
    # Create folders

    if os.path.exists(path):
        shutil.rmtree(path)  # delete output folder
    os.makedirs(path)  # make new output folder
    os.makedirs(path + os.sep + 'labels')  # make new labels folder
    os.makedirs(path + os.sep + 'images')  # make new labels folder
    return path


def convert_coco_json(json_dir='./coco/annotations_trainval2017/annotations/'):
    jsons = glob.glob(json_dir + '*.json')
    coco80 = coco91_to_coco80_class()

    # Import json
    for json_file in sorted(jsons):
        fn = 'out/labels/%s/' % Path(json_file).stem.replace('instances_', '')  # folder name
        fn_images = 'out/images/%s/' % Path(json_file).stem.replace('instances_', '')  # folder name
        os.makedirs(fn,exist_ok=True)
        os.makedirs(fn_images,exist_ok=True)
        with open(json_file) as f:
            data = json.load(f)
        print(fn)
        # Create image dict
        images = {'%g' % x['id']: x for x in data['images']}

        # Write labels file
        for x in tqdm(data['annotations'], desc='Annotations %s' % json_file):
            if x['iscrowd']:
                continue

            img = images['%g' % x['image_id']]
            h, w, f = img['height'], img['width'], img['file_name']
            file_path='coco/'+fn.split('/')[-2]+"/"+f
            # The Labelbox bounding box format is [top left x, top left y, width, height]
            box = np.array(x['bbox'], dtype=np.float64)
            box[:2] += box[2:] / 2  # xy top-left corner to center
            box[[0, 2]] /= w  # normalize x
            box[[1, 3]] /= h  # normalize y

            if (box[2] > 0.) and (box[3] > 0.):  # if w > 0 and h > 0
                with open(fn + Path(f).stem + '.txt', 'a') as file:
                    file.write('%g %.6f %.6f %.6f %.6f\n' % (coco80[x['category_id'] - 1], *box))
            file_path_t=fn_images+f
            print(file_path,file_path_t)
            shutil.copy(file_path,file_path_t)


def coco91_to_coco80_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
    x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
         None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
         51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
         None, 73, 74, 75, 76, 77, 78, 79, None]
    return x

convert_coco_json()

开始运行:
在这里插入图片描述

转换完成后,验证转换的结果:

import cv2
import os

def draw_box_in_single_image(image_path, txt_path):
    # 读取图像
    image = cv2.imread(image_path)

    # 读取txt文件信息
    def read_list(txt_path):
        pos = []
        with open(txt_path, 'r') as file_to_read:
            while True:
                lines = file_to_read.readline()  # 整行读取数据
                if not lines:
                    break
                # 将整行数据分割处理,如果分割符是空格,括号里就不用传入参数,如果是逗号, 则传入‘,'字符。
                p_tmp = [float(i) for i in lines.split(' ')]
                pos.append(p_tmp)  # 添加新读取的数据
                # Efield.append(E_tmp)
                pass
        return pos


    # txt转换为box
    def convert(size, box):
        xmin = (box[1]-box[3]/2.)*size[1]
        xmax = (box[1]+box[3]/2.)*size[1]
        ymin = (box[2]-box[4]/2.)*size[0]
        ymax = (box[2]+box[4]/2.)*size[0]
        box = (int(xmin), int(ymin), int(xmax), int(ymax))
        return box

    pos = read_list(txt_path)
    print(pos)
    tl = int((image.shape[0]+image.shape[1])/2)
    lf = max(tl-1,1)
    for i in range(len(pos)):
        label = str(int(pos[i][0]))
        print('label is '+label)
        box = convert(image.shape, pos[i])
        image = cv2.rectangle(image,(box[0], box[1]),(box[2],box[3]),(0,0,255),2)
        cv2.putText(image,label,(box[0],box[1]-2), 0, 1, [0,0,255], thickness=2, lineType=cv2.LINE_AA)
        pass

    if pos:
        cv2.imwrite('./Data/see_images/{}.png'.format(image_path.split('\\')[-1][:-4]), image)
    else:
        print('None')



img_folder = "./out/images/val2017"
img_list = os.listdir(img_folder)
img_list.sort()

label_folder = "./out/labels/val2017"
label_list = os.listdir(label_folder)
label_list.sort()
if not os.path.exists('./Data/see_images'):
    os.makedirs('./Data/see_images')
for i in range(len(img_list)):
    image_path = img_folder + "\\" + img_list[i]
    txt_path = label_folder + "\\" + label_list[i]
    draw_box_in_single_image(image_path, txt_path)

结果展示:
在这里插入图片描述

配置yolov8环境

可以直接安装requirements.txt里面所有的库文件,执行安装命令:

pip install -r requirements.txt

如果不想安装这么多库文件,在运行的时候,查看缺少哪个库,就安装哪个库,比如我的环境:

pip install thop

我的本地只缺少了这个库文件。

训练

下载代码:https://github.com/ultralytics/ultralytics,通过下载的方式可以下载到源码,这样方便修改。
也可以使用命令:

pip install ultralytics

如果仅仅是为了使用yolov8,可以使用这种方式安装。

yolov8还支持使用命令的方式,例如:

yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"

接下来,创建训练脚本,可以使用yaml文件创建,例如:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch

模型文件在ultralytics/models/v8下面,如图:

在这里插入图片描述

也可以使用预训练模型创建。例如:

model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

然后开启训练。

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model

数据集的配置文件在:ultralytics/datasets/下面,如图:
在这里插入图片描述
是不是很简单!!!!

接下来,我们配置自己的环境。
第一步 找到ultralytics/datasets/coco.yaml文件。
在这里插入图片描述
然后将其复制到根目录
在这里插入图片描述
将里面的路径修改为:

# Ultralytics YOLO ?, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]

train: ./coco/images/train2017  # train images (relative to 'path') 118287 images
val: ./coco/images/val2017  # val images (relative to 'path') 5000 images
test: test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

关于数据集的路径,大家可以自行尝试,我经过多次尝试发现,YoloV8会自行添加datasets这个文件,所以设置./coco/images/train2017,则实际路径是datasets/coco/images/train2017
第二步 新建train.py脚本。

from ultralytics import YOLO

# 加载模型
model = YOLO("ultralytics/models/v8/yolov8n.yaml")  # 从头开始构建新模型

# Use the model
results = model.train(data="coco.yaml", epochs=3,device='3')  # 训练模型

然后,点击train.py可以运行了。
如果设置多卡,可以在device中设置,例如我使用四张卡,可以设置为:

results = model.train(data="coco.yaml", epochs=3,device='0,1,2,3')  # 训练模型

在这里插入图片描述
第三步 修改参数,在ultralytics/yolo/cfg/default.yaml文件中查看。例如:

# Train settings -------------------------------------------------------------------------------------------------------
model:  # path to model file, i.e. yolov8n.pt, yolov8n.yaml
data:  # path to data file, i.e. coco128.yaml
epochs: 100  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 16  # number of images per batch (-1 for AutoBatch)
imgsz: 640  # size of input images as integer or w,h
save: True  # save train checkpoints and predict results
save_period: -1 # Save checkpoint every x epochs (disabled if < 1)
cache: False  # True/ram, disk or False. Use cache for data loading
device:  # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8  # number of worker threads for data loading (per RANK if DDP)
project:  # project name
name:  # experiment name, results saved to 'project/name' directory
exist_ok: False  # whether to overwrite existing experiment
pretrained: False  # whether to use a pretrained model
optimizer: SGD  # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: True  # whether to print verbose output
seed: 0  # random seed for reproducibility
deterministic: True  # whether to enable deterministic mode
single_cls: False  # train multi-class data as single-class
image_weights: False  # use weighted image selection for training
rect: False  # support rectangular training if mode='train', support rectangular evaluation if mode='val'
cos_lr: False  # use cosine learning rate scheduler
close_mosaic: 10  # disable mosaic augmentation for final 10 epochs
resume: False  # resume training from last checkpoint

上面是训练过程中常用的参数,我们调用yolo函数可以自行修改。
等待测试完成后,就可以看到结果,如下图:

在这里插入图片描述

测试

新建测试脚本test.py.

from ultralytics import YOLO

# Load a model
model = YOLO("runs/detect/train11/weights/best.pt")  # load a pretrained model (recommended for training)

results = model.predict(source="ultralytics/assets",device='3')  # predict on an image
print(results)

这个results保存了所有的结果。如下图:
在这里插入图片描述
predict的参数也可以在ultralytics/yolo/cfg/default.yaml文件中查看。例如:

# Prediction settings --------------------------------------------------------------------------------------------------
source:  # source directory for images or videos
show: False  # show results if possible
save_txt: False  # save results as .txt file
save_conf: False  # save results with confidence scores
save_crop: False  # save cropped images with results
hide_labels: False  # hide labels
hide_conf: False  # hide confidence scores
vid_stride: 1  # video frame-rate stride
line_thickness: 3  # bounding box thickness (pixels)
visualize: False  # visualize model features
augment: False  # apply image augmentation to prediction sources
agnostic_nms: False  # class-agnostic NMS
classes:  # filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False  # use high-resolution segmentation masks
boxes: True  # Show boxes in segmentation predictions

训练自定义数据集

Labelme数据集

好博客就要一起分享哦!分享海报

此处可发布评论

评论(0展开评论

暂无评论,快来写一下吧

展开评论

您可能感兴趣的博客

客服QQ 1913284695